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Abstract--Two average statistical properties of the pore space of Fontainebleau sandstones are measured 
on thin sections. They are used to generate fictitious porous media which share the same statistical 
properties as the real ones; the simulation process is thoroughly presented and discussed. The Stokes flow 
of a Newtonian fluid in such media can be numerically determined by a finite-difference scheme in three 
dimensions; the permeability of these media is easily derived from these flow fields. The numerical values 
of permeability are compared to the experimental data. With no adjustable constant, the predicted 
permeabilities were found to be in acceptable agreement with the experimental ones. 
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1. INTRODUCTION 

The prediction of the permeability of real media is a long-standing problem of very important 
practical interest. The determination of the permeability is difficult for two main reasons. 
First, it is usually hard to quantitatively describe the medium in a realistic manner; second, the 
flow field is a solution of partial differential equations which are not easy to solve except 
numerically. 

Recently, classical methods of numerical analysis were used to obtain the flow fields in any three- 
dimensional porous medium and were found to yield satisfactory results with reasonable computer 
times (Lemaitre & Adler 1990). On the other hand, an algorithm originally developed in two 
dimensions (Joshi 1974) was extended to three dimensions (Quiblier 1984); this algorithm can 
generate porous media with given statistical properties. Finally, the permeability of Fontainebleau 
sandstones was systematically measured by Jacquin (1964); this geological material is well-known 
for its homogeneity; thin sections were also made. 

Hence all the necessary ingredients for the generation of simulated porous media with imposed 
properties, the numerical determination of their permeability and the comparison with the 
experimental permeabilities measured on the same samples were ready to use and could be 
combined one with the other one. 

It is the purpose of the present paper to give an account of this attempt. To the best of 
our knowledge, we are not aware of such a previous work. The previous simulations reported by 
Joshi (1974) and Quiblier (1984) were not used in this purpose. Moreover, previous attempts to 
determine the permeability of porous media were limited to various models which are described 
and summarized in Adler (1989). 

This paper is organized as follows. Section 2 is a brief account of the experimental measurements. 
The major properties of the Fontainebleau sandstones are recalled first. The measurement of the 
permeability and the preparation of the thin sections is then discussed at length; two quantities are 
determined from the pore space: the familiar porosity and the less common autocorrelation 
function of the pore space. 

Sections 3 and 4 are devoted to the simulation of real media. It is shown in section 3 how one 
can generate a three-dimensional random porous medium with a given porosity and a given 
correlation function. The medium is made of elementary cubes which are filled by solid or liquid. 
It can be generated in two steps starting from Gaussian and independent variables X(x). Linear 
combinations of these variables yield a population Y(x) which is still Gaussian but correlated; 
the correlation depends upon the set of coefficients a of the linear combinations. This population 
is then transformed into a discrete population Z(x) which takes only two values, 0 and 1; this 
transformation can be viewed as a nonlinear function or filter. The correlation of the population 
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Y(x) is of course modified by this additional filtering; the average value of Z(x) is automatically 
equal to e. 

The practical simulation of given porous media is addressed in section 4. First one has to solve 
a sort of inverse problem; this is performed, as previously, in two steps. Since the experimental 
correlation is known, one has to determine the correlation function of the population Y(x); 
the possibility of this determination is illustrated and discussed. Then the coefficients a can be 
calculated; since the present paper is restricted to isotropic media, the determination of these 
coefficients can be greatly shortened. Some sets of coefficients are given together with the relative 
precision. 

Once these coefficients are known for a given sample, artificial porous media can be generated 
at will. It is first verified that the statistical properties of the simulated media are close to those 
of the real media they are supposed to match. The influence of various "artificial" parameters is 
examined such as the step with which the experimental correlation is sampled. Simulated cross- 
sections of the simulated media are compared to the thin sections; the visual aspect of the former 
is quite satisfactory. Thus, it is concluded that the simulation scheme devised by Joshi (1974) and 
Quiblier (1984) works well. 

The calculation of the flow field and of the permeability of these simulated porous media is done 
in the last section. The fluid problem, the method of solution and the possibilities of the numerical 
program are first presented briefly. Then the influence of the three "artificial" geometric parameters 
on the permeability is carefully analysed. A compromise between various constraints is proposed; 
for a certain choice of values, these parameters do not seem to bias the results too much. The large 
amplitudes of the statistical fluctuations which are encountered during the Monte Carlo simulation 
of samples are insisted upon; the obtention of precise statistical averages is hindered by the length 
of the computations. 

The permeabilities corresponding to five porosities are computed and compared with the 
experimental data. It should be emphasized that there is no fitted constant and that every quantity 
is measured or calculated. The experimental permeability is at most five times larger than the 
calculated one; the shape of the experimental curve is predicted quite accurately, as if a systematic 
"error" has been incorporated in the length scale. The Carman equation is not well verified and 
the Kozeny constant is much larger than its usual empirical value of 5. 

This discrepancy was frustrating though it is, to the best of our knowledge, the first time that 
such an agreement has been obtained with geological porous media. 

Finally, the possible reasons for this relative disagreement are analysed. Among the most 
promising developments of the present research is the inclusion of additional statistical properties 
in the simulation. 

2. EXPERIMENTAL 

We shall insist upon the geometrical properties of the Fontainebleau sandstones and their 
measurements. The permeability data, which are of a more classical character, will be only briefly 
recalled. 

Materials 

Fontainebleau sandstones were selected here because they are known to have remarkable 
properties for geological materials (Jacquin 1964). They are made of a single mineral, quartz; they 
do not contain any clay, hence there is no physicochemical interaction between the solid phase and 
aqueous fluids; permeabilities measured with air and water are usually identical. The geometric 
structure of these sandstones is quite simple since they display only an intergranular porosity; 
there is no microporosity inside the particles. 

Moreover, they are known to be remarkably homogeneous; another important advantage is the 
fact that porosity may be varied while, globally, the same structure is conserved. 

For all these reasons, many measurements were performed on these sandstones. 
Several thin sections of these sandstones are shown in figures l(a-d). The pore space was 

obtained by injecting a dyed glue into the medium; then the sample was cut and the pore space 
replaced by the dye-hardened glue (Zinszner & Meynot 1982). Sections (about 20/~m thick) were 



Figure 1. Thin sections of  Fontainebleau sandstone. The pore space appears in black. (a), (b) and (d) are 
real pictures of  thin sections, while in (c) the contrast between the solid and the "liquid" phases has been 
enhanced by various treatments, mostly manual. The scale is indicated on each picture by a bar which 
corresponds to 0.5 mm. The names and the measured porosity of  each picture are as follows: (a) 2A3, 

e =0.31; (b) GF2, e =0.25; (c) CJ, e =0.21; (d) 12A13, e =0.11. 
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obtained by abrasion of the samples. The pore space is clearly defined since the glue was dyed in 
red; colour pictures of these sections can be taken with the help of a microscope. 

The examples shown in figures l(a-d) make obvious the fact that this material was originally 
nonconsolidated sand. Then various geological processes such as the accretion of the sand particles 
took place with the effect that the porosity decreased. Usually in such sandstones, porosity ranges 
from 0.03 to 0.35, roughly speaking. 

The porosity e and the permeability K were measured on a large number of cylindrical samples 
of dia 2.5 cm and length 3-4 cm. The global porosity was measured by comparison of three 
different weights: weight of the dry sample; weight of the sample saturated with water; and apparent 
weight of the saturated sample immersed in water. Permeability was measured with air and water 
on a few samples; except for the small permeabilities where the Klinkenberg effect takes place 
(Jacquin 1964), no significant difference was observed. Hence all the other measurements were 
performed with air only. 

The permeability data are shown in figure 2. They are taken from Jacquin (1964). It is tempting 
to correlate them by a power law: 

K oc e", [1] 

n was found to be equal to 4.15. This law is in good agreement with the data for the intermediate 
porosities, but it tends to overestimate K for low and high porosities. It was later proposed by 
Bourbie et al. (1986) to consider two regions; for porosities smaller < 5%, n is of the order of 7, 
while it is equal to 3 when e ranges from 8 to 25%. 

Though important for itself, the comparison of the data with [1] is not crucial here since we are 
going to compare the numerical predictions with the data themselves. 

In this respect, it is interesting to notice the existence of large fluctuations in the data: for the 
same value of the porosity, the permeability may differ by almost a factor 10. This is not contra- 
dictory with our statement about the homogeneous character of the Fontainebleau sandstones; it 
was shown by Henriette et al. (1989) that the permeabilities of limestones may vary by two orders 
of magnitude. 

Image analysis 

The porosity and the correlation function of the pore space were measured on each picture. 
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Figure 2. Permeability (for air in mD) as a function of the porosity e (Jacquin 1964). The dots are the 
experimental data. The average numerical permeability / (  was calculated for the four previous samples 
plus an additional one; they are indicated by crosses; data are for N¢ = 27, L c = 8 and n = 4; the vertical 

bars $ indicate the interval of variation of the individual permeabilities. 
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Let us start with general definitions of these quantities. A phase function Z(x) can be introduced, 

1 if x belongs to the pore space, 

Z(x) = 0 otherwise, [2] 

where x denotes the position with respect to an arbitrary origin. 
The porosity e and the correlation function Rz(u) can be defined by the statistical averages (which 

will be denoted by an overbar): 

e = Z(x) [3a] 

[ Z ( x )  - d "  [ z ( x  + u) - ~] 
Rz(u) = (e - e 2) ' [3b] 

e is obviously a positive quantity which is limited to the [0, 1]-interval. A stronger general statement 
can be made on Rz(u); it can be shown that a function R~(u) is a correlation function iff all its 
Fourier components are nonnegative; a more rigorous version of this property can be found in 
Adler (1981). 

It is also interesting to point out that the correlation function of the solid phase is the same as 
[3b]. 

When the material is supposed to be homogeneous, the statistical averages can be replaced 
by volume averages. When it is supposed to be isotropic, these volume averages can be replaced 
by surface averages; hence the use of thin sections is justified. The surface integrations which 
correspond to [3a, b] can be easily performed by any software of image analysis. 

After these general considerations, let us give some details about the image analysis itself. The 
first serious difficulty is the transformation of the initial picture [such as figures l(a, b, d)] into an 
image which can be readily binarized, such as figure l(c). Of course, the alteration of the initial 
image during this step should be minimized. Since our hardware is not sensitive to the colour but 
only to the grey level, we did not find any other way than to do it manually. The pore space was 
simply copied on a transparency; when the image has the dimensions of a standard sheet of paper, 
the precision is good enough. 

The subsequent treatment of such black-and-white images is standard. The image is registered 
and binarized; thanks to the contrast which was manually introduced, a threshold is chosen without 
any difficulty. The length scale was carefully measured; the length corresponding to 1 pixel will be 
denoted ~ (in/~m). 

The binarized image S is divided into two halves Sj and $2. Hence, 

S = S ,  US2, S, n $2 = ~ .  [41 

The porosity is simply defined as the proportion of pore space contained in a given surface. 
In order to get an idea of the homogeneity of the sample, this ratio was measured twice, i.e. on 
S and on SI. The corresponding values are denoted by e and e~. They are given in figures 3(a-d) 
for some of the samples which were studied; in these samples, the differences are seen to be quite 
small; this was not always the case and the constant character of the porosity was one of the criteria 
to select or not select a thin section. 

In order to calculate R=(u), S~ is first translated by a distance u along the x-axis; it yields S, (+  u). 
The spatial average indicated in [3b] is replaced by an intersection of images, 

Z(x , y ) .  Z(x + u,y) = S,(+u) N S. 

The other operations indicated in [3b] are then performed algebraically. 
The results relative to the images shown in figures l(a-d) are displayed in figures 3(a-d). Note 

that the image CJ contains about four times more information than the other three because of the 
change of scale. The major difference between these images is that (a), (b) and (d) display quite 
important correlations for large values of u which are almost absent from image (c). 

This was thought to be caused by a relative lack of statistics; in order to check this point, the 
image CJ was divided into four equal parts and the correlation function was measured on each 
part. The results are displayed in figures 4(a-d). Clearly, the long-range correlations are relatively 
enhanced when the images are smaller, i.e. when they contain less information; these correlations 
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Figure 3. Experimental correlation functions R, as functions of the translation u. The abscissae are 
graduated in pixels; the scales are: (a), (b) and (d), a = 3.8 pm/pixel; (c) a = 4.6 #m/pixel. Images (a), (b) 
and (d) were analysed with 256 x 256 pixels, while image (c) was analysed with 512 x 512 pixels. These 
measurements were, of  course, performed on the images displayed in figures l (a-d) .  The porosities t and 

~ are: (a) 0.31, 0.32; (b) 0.24, 0.26; (c) 0.20, 0.21; (d) 0.11, 0.10. 
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Figure 4. Experimental correlation functions R: as functions of  the translation u. ( a ) - (d )  correspond to 
one-fourth of  the image CJ displayed in figure l(c). The scale ,, is always equal to 4.5 #m/pixel. The 
porosities ~ and s t are: (a) 0.2 i, 0.22; (b) 0.16, 0.15; (¢) 0.20, 0.16; (d) 0.14, 0.14. These images were analysed 

with 256 x 256 pixels. 
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are different in each image; however it should be noticed that the four correlation functions are 
very close for short distances u, i.e. when R: > 0.2. 

The relative role of  the short- and long-range correlation functions on the simulated porous 
media and on their permeability will be detailed later. 

The four correlations displayed in figures 3(a-d) can now be compared one to the other 
when the same length scale is used (cf. figure 5). Obviously, there is no dramatic change from 
one sample to another; two of  them are largely superimposed while the correlation for the image 
12A13 is intermediate between the two former ones and the fourth one. Of course, other 
representations of  these data were tried; for instance a correlation length 9 may be introduced by 
the formula 

R~(u) = e -"/~. [5] 

Such an expression is well-verified for short distances u only for the image 12A13, i.e. for the lowest 
porosity; in the other cases the correlation decreases too rapidly. Of course, such an expression 
is not expected to apply for large u. 

No further systematic work was done on this particular point. The concept of  a correlation length 
will be used in section 5 in the loose sense of a length above which the correlation is negligible. 
Another check on the quality of the data was done as follows. Since the Fourier coefficients of  

a correlation function should be positive (Adler 1981), they were systematically calculated for the 
experimental correlations. Then the negative Fourier coefficients were examined and generally 
found to be small with respect to the largest positive ones; finally, the correlation functions were 
reconstructed with the negative coefficients set to zero. The difference from the original functions 
was negligible since only the third digit was modified, which is of  course much smaller than the 
other experimental errors. 

It might be the right point here to try to make some practical recommendations on the 
measurement of  the correlation functions. A priori one has to find a compromise between 
homogeneity and good statistics; the former requirement is easier to fulfil with small images, while 
the latter one requires large images. The key property now seems to be the statistical homogeneity 
of the images, a parameter which is roughly estimated by the porosity variations in a given image. 
This appears to be more important than the extinction of  the correlation at long distances since 
one will not take these distances into account later anyway; it also seems more important than the 
precision of  the short-range correlation since it is not modified very much from one image to the 
other one. 

A good illustration of  these considerations is provided by the image CJ displayed in figure l(c). 
The long-range correlations is negligible, but it can be seen from figures 4(a-d)  that porosity 
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Figure 5. Experimental correlation functions R~ as functions of  the translation u. The length scale ~t 
is always equal to ct = 3.8 #m/pixel.  Data  are for: image 2A3 (+) ;  image GF2 (×) ;  image CJ (~ ) ;  

image 12Al3 (©). 
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undergoes important variations within the sample. The penalty for good statistics is a relative lack 
of homogeneity. 

3. G E N E R A T I O N  OF RANDOM DISCRETE VARIABLES 

Let us first state the purpose of this and the next two sections. We want to generate a three- 
dimensional random porous medium with a given porosity e and a given correlation function; the 
medium is homogenous and--but  this last property is not essential--isotropic. 

Equivalently, we want to generate a random function of space Z(x) which is equal to 0 in the 
solid phase and to 1 in the liquid phase. Z(x) has to verify the two average properties (Quiblier 
1984). One should emphasize that the point of view is quite different here; e is a given positive 
number < 1; R:(u) is a given function of u which verifies the general properties of a correlation 
(cf. Adler 1981) but is otherwise arbitrary. 

For practical purposes only, the porous medium is constructed in a discrete manner. It is 
considered as being composed of N~ small cubes, each of the same size a. These elementary cubes 
are filled either with liquid, or with solid. Examples of such porous media have already been 
provided elsewhere (Lema~tre & Adler 1990; Adler 1989). Hence the spatial variables x and u will 
only take discrete values; the corresponding trios of integers are denoted by 

x' = x/a = (i,j,  k)  [6a] 

and 

u' = u /a  = (r, s, t ). [6b] 

It should be emphasized that the correlation function of isotropic media only depends on the 
norm of the vector u (cf. Adler 1981). 

An additional condition is imposed by the fact that the sample of generated porous medium 
has a finite size a ' N c .  In such a case, it is standard to consider periodic boundary conditions 
on the sample for the determination of permeability (cf. Adler 1989). The same requirement 
should be imposed on the generation of the medium itself. Hence, the random field Z(x) has to 
verify 

e = Z(x) [7a] 

and 
[ Z ( x )  - ~]. [Z(x , )  - ~] 

Rz(u) = (~ _ ~2) , 

where the translated vector xt is defined as mod a • Nc for each of its components: 

[7bl 

x, = x + u (mod a • No). [8a] 

This equality means that, for instance, 

it = i + r (mod No). [8b] 

Thanks to this spatial periodicity, all the physical quantities are independent of the choice of the 
origin and of the faces of the unit cells. 

Several methods certainly exist to generate discrete random variables which verify [7a, b]. 
Here we shall specialize to isotropic media an algorithm, due to Quiblier (1984), for general 
three-dimensional porous media. This algorithm was itself an extension of the two-dimensional 
scheme devised by Joshi (1974). 

For sake of clarity, we shall briefly present this algorithm in the present section and recall the 
major properties of the corresponding random functions. It can be shown that a random and 
discrete field Z(x) can be devised from a Gaussian field X(x) when the latter one is successively 
passed through a linear and a nonlinear filter. Let us summarize the influence of these filters and 
relate their properties to the statistical properties of the resulting fields. 
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Linear filter 
Consider first the initial random field X(i,j, k); the random variables X(i,j, k) are assumed to 

be normally distributed with a mean equal to 0 and a variance equal to 1; these variables are 
independent. 

A linear operator can be defined by an array of coefficients a(u'), where u' belongs to a finite 
cube [0, Lc] 3 in Z 3. Outside this cube, it is equal to 0. A new random field Y(x) can be expressed 
as a linear combination of  the random variables X(x'): 

Y(x)=  ~ a (u ' )X(x0 ,  [9] 
u'~[0. Lcp 

where the translated vector x; is defined as mod Nc for each of its components• 
The definition [8] is identical to the definition used by Joshi 0974) and Quiblier (1984), except 

for the periodic character introduced by the condition mod Nc. 
This additional condition is imposed by the flow problem which will be solved in section 5; 

periodic boundary conditions will be imposed on the sample N~ 3. 
In order to better understand the necessity of this requirement, one can add a word to describe 

the result without the condition mod No. Suppose that Nc > Lc, as will generally be the case. Then 
the upstream and downstream faces of  the sample are statistically independent; this implies that 
the calculations on the flow field which are implicitly done on an infinite periodic medium whose 
unit cell is the sample could be completely biased because of this statistical independence; the pores 
in the upstream and downstream faces being statistically independent have no reason to be 
connected. 

Without any further requirements on the coefficients a(u')  of the linear filter, it can be shown 
that the random variables Y(x) are Gaussian and centred if N~ > Lo. 

Let us further assume that the variance of  Y(x) is equal to 1, 

e { r2(x)} = I. [I01 

Hence the random variables Y(x) have a standard normal distribution, though they are not 
statistically independent anymore• Their correlation function Ry(u) is easily seen to be 

Ry(u) = ~ a,.,.tau+ .... ,, [11] 
r,s, t~[0, Lc] 

where u + r is determined mod No. 

Nonlinear filter 
The random field Y(x) is correlated, but is still not satisfactory since it takes its values in •, while 

the porous medium has to be represented by a discrete-valued field Z(x)  (cf. Joshi 1974). 
In order to extract such a field from Y(x), one applies a nonlinear filter G, i.e. the random 

variable Z is a deterministic function of  Y, 

Z = G(Y). [12] 

When G is known, the statistical properties of  the random field Z can be derived from those of  
Y. For  the sake of  completeness, this derivation, which can be found in Joshi (1974), is briefly 
repeated here. 

Since the random variable Y(x) has a standard normal distribution (i.e. with a zero mean and 
a variance equal to 1), its distribution function P(y) is given by 

fy • e -y/2. dy. [13] = 

The deterministic function G is defined by the following condition. When the random variable 
Y is equal to y, Z takes the value z: 

z = 1 when P(y) <~ ~, [14a] 

z = 0 otherwise. [14bl 

It is, thus, pretty obvious that the average value of  Z(x) is equal to e, and its variance to e - e2. 
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The most difficult point consists of the determination of the correlation function Rz(u) of Z(x) 
as a function of Ry(u). One can start from the fact that the random variable (Y(x), Y(x + u)) is 
a bivariate Gaussian whose probability density is known [cf. Adler (1981), for instance]; this density 
can be expanded in terms of Hermite polynomials. After some tedious manipulations which use 
classical identities (Gradshteyn & Ryshik 1965), Rz(u) can be expressed as a series in terms of Ry(u): 

RAu)= Cm" R";(U), [15] 
m = 0  

where the coefficients Cm are given by 

Cm= x / ~ . m !  -~ c (y)exp  - tIm(y)'dy, [16a] 

together with 

and 

e - I  
c ( y ) = x / e (  1 ) ~ = - -  _ i f P ( y ) ~ < e  [16b] 

g 
c(y) = if P(y) > e. [16c] 

It should be noticed that the definition of the Hermite polynomials is not standard; the convention 
used by Joshi (1974) and Quiblier (1984) was adopted here; Hm(y) is defined as 

f y2~ d m exp(_y_y~/" Hm(y) = (-- l)m exp~--~-) ~y~ [171 
\ - - /  

The subsequent use of these polynomials in Joshi (1974) and Quiblier (1984) was found to be 
consistent with this definition. 

Finally, the set of the formulae equivalent to [16a-c] is apparently different in Quiblier (1984) 
due to a typographical mistake. 

4. S IMULATION OF A REAL POROUS MEDIA 

When one wants to simulate a given porous medium, the first problem is the determination of 
the correlation function Ry(u) and of the set of coefficients ~: this is what we shall call the inverse 
problem. Once these coefficients are calculated, porous media can be simulated and their general 
properties can be critically examined. 

In this section, the inverse problem will be addressed first. Then practical applications of the 
method will be presented and discussed. 

The inverse problem 
Let us first look at the properties of the nonlinear filter given by the formulae [15]-[17]. It is 

obvious that 

R~(Ry, e) = Rz(Ry, 1 -- e). [181 

The limiting case e = 0.5 is interesting since it can be analytically calculated. By standard 
manipulations, it may be shown that 

2 
R: -- -- • arcsin(Rv ), 

7~ 

since the coefficients C~ are given by 

___2, 

C~ --- 0 m even 

and 
2 (m - 2)!! 

nm (m - 1)!! 

t [191 8 - - 2 ~  

[20a] 

[20b] 

m i> 3, m odd. [20c] 
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The function R~(Ry, e) is represented in figure 6. It was numerically determined as follows. The 
integral in [16a] was evaluated from y ranging from - 1 0  to + 10 as in Quiblier (1984); larger 
integration domains were tried but without any influence on the final result. 

The series in [15] is limited to a maximum value m = M. In Quiblier (1984), M was chosen to 
be 12; however when R r is close to 1, the series converges very slowly. Our data were obtained with 
M = 50; above this value, numerical difficulties such as overflows occurred. In order to give an idea 
of the numerical precision, let us say that only the three first digits were stable with M = 30 for 
Rye0 .9 ;  moreover, for various values of e, Rz(Ry= 1) is equal to ,~0.9 instead of 1, which 
illustrates the deterioration of the precision when Ry tends towards 1. 

This last difficulty was turned around in the following way. It was supposed that close to l, 
R: can be expanded as 

R~ = 1 - at" (1 - -  Ry) 1/2 + ' " .  [21] 

This expansion was suggested by the analytical formula [19]. The constant a~ depends upon the 
porosity e. It was determined by comparison of [21] with the numerical data at Ry = 0.9 where 
the precision is still acceptable. The validity of this expansion was checked by comparing its 
prediction with the numerical data at Rv=0.8;  for instance, for e =0.1,  one obtains with [21] 
Rz(Ry = 0.8)= 0.511, instead of 0.513 numerically; the fit is thus excellent. 

The inverse problem relative to the nonlinear filter consists of the determination of Ry when R~ 
is known; I15] has thus to be solved. The graphical discussion of this equation is rendered obvious 
by figure 6. Remember here that the absolute value of a correlation function is always ~< 1. When 
R~ >>, Rz(Ry = - l ) ,  [15] also has a unique solution. Otherwise, this equation does not have any 
solution. This imposes an extra condition on the experimental function R2. 

Ry w a s  determined as a function of the translation vector u for the experimental data displayed 
in figure 5. The results are shown in figure 7 and they can be commented on as follows. The general 
shape of the correlation functions R~ is conserved; the values which are the most modified are the 
ones close to 1. It is gratifying to note that for the data analysed here, [15] always has a solution. 

A last check was done on Ry. Since they are supposed to be correlation functions, they should 
also have positive Fourier coefficients. As was done for the experimental R2, these coefficients were 
systematically determined for the correlation functions Ry. The same conclusions as before hold; 
whenever they are negative, the Fourier coefficients are small; if the correlation functions R~ are 
reconstructed with the negative coefficients set to zero, the difference with the original functions 
is negligible. 

This remark terminates the presentation and discussion of the inverse problem associated with 
the nonlinear filter. Let us now switch to the linear filter [9]. 

1.0 

0.5 

-0.5 

Rz 

-0.5 0 

S 
Rr 

I I 
0.~ t 

Figure 6. The correlation function R: as a function of  the correlation R~, [15]. Values of the porosity 
are: (a) 0.I; (b) 0.2; (c) 0.3; (d) 0,4; (e) 0.5. 
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Figure 7. Experimental correlation functions Ry as functions o f  the translation u. Condit ions are the same 
as in figure 5. 

The inverse problem associated with it consists of  the determination of the coefficients ~ when 
Ry(u) is known (cf. [11]). 

A few general comments can be made regarding [11]. It is easily seen from examples in one 
dimension that the solution of [11] is not unique. For  instance, for a monodimensional filter with 
Lc = 1, [11] is reduced to the couple of conditions 

~02 + ~ = 1, 50a~ = Re(l). [22] 

This system has two positive roots, fi2 if 1 - 4R~ (Lemaitre & Adler 1990) is positive. This condition 
is equivalent to the nonnegative definite character of  the correlation function Ry. 

So far we have not been able to generalize this property to any three-dimensional system. This 
is an important point since the existence of solutions to [11] would be guaranteed by the 
nonnegative definite character of Ry.  

Let us now consider the numerical solution of  [11]. Joshi (1974) and Quiblier (1984) solved it 
directly. This system is quite simple in its structure but it leads to a large number (Lc + l) 3 of 
unknowns and equations, even for small values of L c. When the porous media are isotropic, this 
number can be greatly reduced since the coefficients ~r,s,, should only be functions of the distance 
d = (r E -k- s 2 q-/2)1/2: 

~,,s,, = ~ ( x / r  2 + s 2 + t2). [23] 

Hence, for isotropic media, one has to determine the function ~(d) in the L~+ 1 points 
~(d = 0) . . . . .  ~(d---L~); the points located in between are calculated by a given interpolation 
scheme. The system [11] is reduced to the Lc + 1 equations: 

5(~/r 2 + s: + t2) • a(x/(r  + u) 2 + s 2 + t 2) = Ry(u), u = 0 . . . . .  Lc. [24] 
r . s . t~[O.L c] 

This system was solved using a combination of  two subroutines of the IMSL Library. Whenever 
necessary the coefficients fi are determined by ICSICU which interpolates by cubic splines; a single 
function is defined as the sum of the squares of the Lc + I equations [24] and the subroutine 
ZXMIN calculates a minimum of  this function by a quasi-Newton method. It is verified a posteriori 
that this minimum corresponds to a solution of [24]. 

This combination of subroutines worked quite well; some examples of sets of  coefficients ~ are 
given in table 1, together with the value of the minimum ~ of the function determined by ZXMIN. 

Incidentally, it is useless to take into account every point of  the correlation Ry. Usually, one point 
is selected every n points; for instance, Ry(u  = 0), Ry(u = n), Ry(u = 2.  n) . . . . .  Ry(u = Lc' n) are 
retained. 
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Table 1. Coefficients ~(d) of the linear filter; the images are displayed in figures l(a - d). 
Data are for Lc = 8 and n = 4 

Image 

Coefficients 2A3 GF2 CJ 12A13 

a(o) -0.1608 0.1141 -0.05350 0.2130 
2(1) -0.09612 0.1163 0.00163 0.01930 
2(2) 0.04362 0.1981 0.1547 -0.02923 
2(3) -0.02945 0.09622 0.1641 0.03030 
2(4) -0.02728 -0.03673 0.04373 0.01642 
2(5) 0.00449 -0.03032 -0.00870 -0.01928 
2(6) 0.05580 -0.01673 -0.00652 0.05862 
2(7) 0.07800 -0.03311 -0.02251 -0.07218 
5(8) 0.02928 -0.3009 -0.01568 -0.05229 

0.15.10 -2 0.35.10 -3 0.59.10 -3 0.52.10 -2 

Some add i t i ona l  w o r k  was done  on  these coefficients but  no  general  o rde r  could  be found  in the 
va r ia t ions  o f  these coefficients. F o r  a given set o f  da ta ,  they a p p e a r  to be er ra t ic  funct ions  o f  
dis tance.  In  mos t  cases, negat ive  and  posi t ive  coefficients are ob ta ined;  they all d i sp lay  the same 
sign only  in rare oppor tun i t i es .  W h e n  the I M S L  subrou t ine  Z X M I N  was s ta r ted  f rom var ious  
init ial  condi t ions ,  different  so lu t ions  were ob ta ined  which possessed the same overal l  precision.  

Sets a '  and  a" co r r e spond ing  to the fol lowing cond i t ions  were also c o m p a r e d  for  the same 
cor re la t ion  Ry. a' was ob t a ined  for  n and  Lc = 21c, and  a" was ob ta ined  for  2n and  1~ such as the 
same real  d i s tance  is explored .  However ,  a '  was no t  found  to be the in te rpo la ted  values o f  a",  as 
was expected on intui t ive grounds .  

Generation of real porous media 

Once the coefficients o f  the l inear  filter are de te rmined ,  s imula ted  po rous  med ia  can be genera ted  
at  will. I t  should  be emphas ized  tha t  three "ar t i f ic ia l"  pa rame te r s  were in t roduced  in these 
s imula t ions :  

• n the d is tance  between two exper imenta l  data ;  
• Lc the to ta l  n u m b e r  o f  such da ta ;  
• Arc the size o f  the genera ted  cube. 

Af te r  a general  d iscuss ion o f  the average  proper t ies  o f  the s imula ted  media ,  the influence o f  these 
pa r ame te r s  will be briefly presented.  

Let  us first l ook  at  the s ta t is t ical  p roper t i e s  o f  an example  o f  po rous  medium.  Table  2 shows 
tha t  the agreement  between the cor re la t ion  funct ion o f  the s imula ted  med ia  and  the exper imenta l  
cor re la t ion  is p re t ty  good.  The  influence o f  the to ta l  n u m b e r  o f  s imula ted  conf igura t ions  is also 
clear; one needs to genera te  at  least  5 or  10 such conf igura t ions  (i.e. 8 • 105 e lementary  cubes),  the 
agreement  is excellent;  it is interest ing to not ice  tha t  the average difference between the s imula ted  
and  the exper imenta l  cor re la t ion  is o f  the o rde r  o f  magn i tude  o f  the e r ror  done  dur ing  the 
reso lu t ion  o f  [24]. 

Table 2. Statistical properties of simulated porous media. Data are for image GF2, 
L c = 8 , n = 4 a n d N c = 2 0  

R:(u) 6 9/= i 91= 5 91= 10 91= 20 91= 100 

1 0.002 1 1 l 1 1 
0.465 --0.004 0.501 0.443 0.455 0.457 0.459 
0.163 0.003 0.214 0.145 0.165 0,168 0.165 
0.006 - 6 "  10 -3 0.064 0.010 0.014 0,013 0.005 

--0.038 -- 10 -4 --0.013 --0.032 --0.032 --0.033 -- 0.042 
--0.042 0.002 --0.059 --0.034 --0.041 --0,043 --0.045 
--0.045 -- 10 -4 --0.062 --0.046 --0.048 --0.049 --0.047 
--0.034 10 -3 --0.041 --0.015 --0.040 --0.038 --0.034 
--O.Ol 1 0.002 --0.006 0.001 --0.016 --0.006 --0.003 

= 0.25 ~ = 0.27 ~ = 0.25 ~ = 0.25 ~ = 0.27 ~ = 0.25 

The first column recalls the experimental correlation. 6 is the residue of each equation 
of system [24]. Average correlations and porosities ~ are given for 91 configurations. 
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This has been found to be generally the case; whenever the resolution of  [24] is not precise, then 
the average simulated correlation itself is not in good agreement with the experimental correlation 
it is supposed to fit. For  instance, when n • Lc is too small, Rz(n • Lc) may not be sufficiently small; 
in this situation, as already pointed out in Quiblier (1984), the precision of the solution of  [24] is 
poor and the simulated correlations are also found to be poor. 

The influence of the parameters, n, L¢ and Nc can now be presented. The choice of this set of 
parameters is not totally free; the larger N~, the better; it will be seen in the next section that Arc 
is limited to 27 presently. L~ should be as large as possible with the constraint that it is at least 
smaller than Arc. 

Before the influence of n is studied, the statistical variations of the generated media are illustrated 
in figures 8(a-d) for a given set of parameters. The variety of  the generated shapes is striking, 
though similarities between parts (b), (c) and (d) are apparent; part (a) looks different. 

The influence of  n is illustrated by figures 9(a-d). The images which are presented were 
deliberately chosen for their average character. The product n . L c  was kept constant in figures 
9(a-c), so that the real length of  the correlation remains the same from one image to another. 
Hence, the change of  n is simply equivalent to a change of  the unit length scale; an arbitrary unit 
scale is given in figures 9(a-d); for instance, the same real length looks 4 times larger in image (c) 
than in (a); this is consistent with the visual impression given by these images since image (c) is 
a plausible magnification of (a); it is also interesting to note that isolated elementary squares are 
almost absent in image (c). Images (b) and (d) were obtained with n = 4 and 3, respectively; the 
other parameters were identical; no difference is clearly apparent in images (b) and (d). 

. . . . .  r . . . . . . . .  | . . . . . .  I i  " , 

.... ! -  
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m m 'r 

I._ ................ _JL_ .............. i 

(c) (d) 

Figure 8. Cross-sections of a sample of simulated porous medium. The pores are black; the solid phase 
is white; the boundaries of the sample are indicated by the broken lines. This sample has the same 

characteristics as the image 12A13 (e = 0.11); N~ = 27, L c = 8 and n = 4. 
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Figure 9. Cross-sections o f  s imulated porous media.  Conven t ions  are as given in f igure 8. The statist ical 
characterist ics are those o f  the image G F 2  (e = 0.25). N c = 27. D a t a  are for :  (a) L c = 4, n = 8; (b) L c = 8, 

n = 4 ; ( c )  L c=16,  n = 2 ;  (d) L c=8 ,  n = 3 .  

Figure 9(b) can be compared with the real cross-section displayed in figure 1 (b). The two figures 
share a number of features: the random aspect of the cross-section, the connection of a few pores 
to one another, the existence of several isolated pores. 

The influence of porosity on the resulting structure may be more completely examined in 
figures 10(a-d). The images displayed in figures l(a-d) have been simulated with the same set of 
numerical parameters. The results can be commented on in the following way. In figure 10(a) [as 
is figure l(a)], the pores are largely connected to one another. As already stated, figure 10(b) [as 
in figure 9(b)] contains two kinds of pores; some are connected and some isolated. The impression 
given by figure 10(c) is very different since only four large pores appear; this peculiar feature can 
be caused by the large experimental correlation R: (cf. figure 5). Finally, figure 10(d) is mostly 
composed, as is figure 1, by isolated pores. 

Concluding remarks 
A few remarks end this section. It can be safely concluded that the simulation process which 

was devised by Joshi (1974) and Quiblier (1984) works quite well. The porosity and the correlation 
function are well-reproduced. Moreover, the visual aspect of the simulated cross-sections is not at 
odds with the aspect of the real ones. 

The present work was deliberately restricted to isotropic media; on the numerical side, this 
restriction only modifies the determination of the coefficients a of the linear filter; the rest of the 
analysis remains unchanged. It should be emphasized that the additional experimental work 



706 P.M. ADLER et al. 

I 
I 
I 

(a) 

I I  

l i e  j _  i 
(b) 

r . . . . . . . . . . .  -3 

I 
i 
I ! 
I ! 
! 
! 
! 
! 
I 

II 

I 

( c )  ( d )  

Figure 10. Cross-sections of simulated porous media of various porosities. Conventions are as given in 
figure 8. The statistical characteristics are those of the images displayed in figures l (a-d)  in the same order. 

Data are for: N c = 27, Lc = 8 and n = 4 for (a), (b) and (d); n = 3 for (c). 

required for the analysis of  anisotropic media is considerably larger than the additional numerical 
effort. 

Finally, it will be seen in the next section that the calculation of the flow field imposes extra 
conditions on the so-called "artificial" parameters Arc, Lc and n. 

5. FLOW AND P E R M E A B I L I T Y  

Once finite samples of porous media are generated, the flow field of Newtonian fluids at low 
Reynolds number can be determined with the program which was first described by Lemaitre & 
Adler (1990). 

The flow problem will be briefly recalled here together with a description of the program itself 
and of  its possibilities. In the second paragraph, this program is applied to the porous media which 
were determined and compared with the experimental data which were presented in section 2. 

Genera l  

The low Reynolds number flow of an incompressible Newtonian fluid is governed by the usual 
Stokes equations: 

V p  = # V 2 v [25a] 
and 

V. v = 0, [25b] 



FLOW IN SIMULATED POROUS MEDIA 707 

where v, p and p are the velocity, pressure and viscosity of the fluid, respectively. In general, 
v satisfies the conditions 

v = 0  on S, [26a] 
and 

v is spatially periodic, [26b] 

S denotes the surface of the wetted solid inside the unit cell. The volume z0 of this cell is equal 
to (N~" a) 3. 

As in section 3, one considers a finite sample of size N¢.a (cf. Lemaitre & Adler 1990). This 
system of equations and the conditions apply locally at each point R of the interstitial fluid. In 
addition, it is assumed that either the seepage velocity vector v is specified, i.e. 

v = - - .  R ds. v = a prescribed constant vector, [27a] 
"CO ~0 

or else that the macroscopic pressure gradient Vp is specified, 

Vp = a prescribed constant vector. [27b] 

As is well-known, these two quantities are related by the permeability tensor K such that 

vp [28] 

Here K is a symmetric tensor that is positive definite. It only depends on the geometry of the system 
and thus can be simplified when the porous medium possesses geometric symmetries. A good 
example is given by the regular fractals studied by Lemaitre & Adler (1990), which possessed cubic 
symmetry; hence K is a spherical tensor, i.e. 

K = KI,  [29] 

where I is the unit tensor. 
The same property holds for the average permeability K" of the random medium since it is 

isotropic only in the average. 
The numerical method which is used here is the same as that used by Lemaitre & Adler (1990). 

In order to cope with the continuity equation, the so-called artificial compressibility method was 
applied with a staggered marker-and-cell (MAC) mesh. In essence, the problem is replaced by an 
unsteady compressible one which is assumed to converge towards the steady incompressible 
situation of interest. 

The number of iterations was minimized by an implicit scheme and the equations were solved 
successively along each direction; this is the so-called alternating-direction-implicit (ADI) scheme. 
It will be seen below that the computational times and the necessary memory storage were 
acceptable. A FORTRAN-77 version of the program is available from the authors upon request. 
It is quite portable in the sense that it only requires two subroutines of the IMSL Library, namely 
the generator of independent Gaussian variables G G N M L  and the interpolator ICSICU. 

The mesh spacing A is the same in the three directions. It is a fraction 1/N of the smallest length 
which exists in the medium under consideration. Thus, it is given by 

a 

A = ~ ,  [301 

where N is an integer. 
For a given configuration, a numerical integration over one side of the unit cell yields the seepage 

velocity and K. 
Estimation of the permeability may be obtained from the classical Carman equation. Let us omit 

any distinction between the various components of K: then, K may be expressed as 

m 2 
K = e - -  [31] 

k 

where m is the hydraulic radius [defined as (free volume/wetted area)] and k is the so-called Kozeny 
constant. This equation has already been discussed at length by Lemaitre & Adler (1990). 
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It might be the right place at the end of this general presentation to give some computational 
details since the practical implementation of the routine can sometimes be considered as a problem. 
All the calculations were performed on a CRAY-XMP. 

The maximum memory allowed was 3 megawords in simple precision (i.e. 64 bits). The largest 
cube which could be calculated with this memory has a size Arc = 27 with N = 2 (i.e. 8 discretization 
points/elementary cube). 

The time step was usually equal to 0.18 in dimensionless unit. This is surprisingly large and it 
is surely the key point which rendered the present study feasible. It might be useful to recall that 
the time step is limited by the occurrence of numerical instabilities; so the larger the time step, the 
smaller the number of iterations necessary to reach the steady state with an acceptable precision. 
The program is able to detect numerical instabilities and to start again the calculations for a given 
configuration with a diminished time step. However, it was empirically found that the time step 
could not be increased during a given calculation to accelerate convergence: an instability was 
almost systematically triggered in this case. 

Convergence was reached when the flow rate was found the same within p % across the various 
sections of the medium. Unless it is mentioned, p = 1 in the following. It took sometimes more 
than 104 iterations to obtain the solution. 

Let us given an example to be specific. Nineteen porous media corresponding to the image 2A3 
were simulated with N c = 20, N = 2; the average number of time steps to obtain the convergence 
was 1450, but it ranged from 580 to 3460. One time step took about 0.36 s on the CRAY; so it 
took about 9 min in the average to calculate one configuration. 

The influence of the discretization parameter N has already been studied by Lemaitre & Adler 
(1990) for the case of random medium derived from site percolation. It was seen that for samples 
of size Arc = 10, its influence was < 8%. This error is completely negligible here since larger samples 
are used and since the statistical fluctuations are >>8%. Hence the minimal value N = 2 will be 
systematically utilized in the following. 

Results and discussion 

The presentation of the results and their discussion is organized as follows. First, a few useful 
quantities are defined, such as the various possible averages of permeability. Then the large 
amplitudes of the statistical fluctuations are illustrated by an example; this point is important since 
it gives an idea of the "precision" of the numerical data. The influence of the artificial geometric 
parameters n, Lc and Arc is discussed. Once these parameters have been chosen adequately, the 
permeability is calculated for five samples corresponding to five different porosities and is compared 
with the experimental data and the predictions of the Carman equation [31]. A general discussion 
of the possibilities of the present method closes this subsection. 

The length of the numerical computations should always be borne in mind throughout the rest 
of this section; it was simply impossible to explore all the possible combinations of parameters. 

The dimensional values of the permeability are given here in Darcy (D) in order to avoid any 
ambiguity. Permeabilities are known to be equivalent to the square of a length and 1D is very close 
to 1/~ m 2. The dimensional value is derived from the numerical and dimensionless calculations in 
the following way. During the course of the image analysis, it is easy to determine the length 0t (/am) 
corresponding to 1 pixel; the experimental correlation is sampled every n pixels. Hence, the size 
a of the elementary cubes is equal to mt(/~m). The dimensional permeability K is simply derived 
from the dimensionless one by multiplying it by (mr) 2. 

A number of configurations are simulated for a given set of conditions. 9l configurations 
percolate, i.e. have a nonzero permeability; 91NP configurations do not percolate. For the sake of 
completeness, the average permeability K* of the percolating configurations will be given, 

K* =-- .1 ~ K,, [32] 
i = 1  

as well as the corresponding fluctuations, 

F - ~-~-. . (K~ - K*) 2 . [33] 
i = 1  
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However, the average permeability R is the average over all the configurations 

9l 
/(  = K* . [34] 

9l + 91NF 

It is this value which has to be compared with the experimental data. 
It is important to appreciate right at the beginning the order of magnitude of the statistical 

fluctuations. Of course this quantity depends upon the size Nc of the unit cell; on physical grounds, 
it is expected that the larger the cell, the smaller the fluctuations. This is seen to be qualitatively 
true in table 3, where some results relative to the sample 2A3 are gathered. The maximum and 
minimum permeabilities Kmax and Kmin of the percolating configurations are also given; these 
quantities give a precise idea of the range of the fluctuations. Note that the porosity of the 
configuration corresponding to Kmax for Nc = 10 was equal to 0.66; the final average porosity was 
0.36 and, thus, pretty close to the desired value of 0.31. 

The influence of the size Nc of the unit cell is not generally important (cf. tables 3 and 4), except 
when Arc is only slightly larger than L¢. In this case, which is illustrated in table 3 and also in 
table 4 for the image GF2, K is systematically increased. This effect seems to be mostly due to the 
generation with periodic boundary conditions of the sample which may bias the long-range 
correlations for Nc ~ L~. This bias can be totally avoided when Nc > 2L¢. When this condition is 
fulfilled, the data do not appreciably depend upon Nc anymore. 

This problem of the size of the unit cell will be addressed again later in slightly different terms. 
Large values of N~, such as 27, were practically quite difficult to study in the present state of 

the program, especially at low porosities such as 0.14 and 0.10. The program ran during very long 
times and some of the explored configurations were nonpercolating. Hence, a large amount of 
computer time was wasted for N¢ = 27 without any appreciable result. 

A good compromise seemed to be obtained for Nc = 20. For this value, the statistical fluctuations 
were not too important and computer time was used efficiently without appreciable loss. Of course, 
it is hoped that future versions of this program will be more efficient so that larger samples can 
be studied; they will certainly incorporate a fast exploration and identification of the dead fluid 
regions and of the nonpercolating configurations. 

The influence of the parameter n on the numerical results was briefly analysed. Due to the 
important computer time which would be required, a systematic analysis was not started; however, 
its most salient features can be understood. 

When n is small, i.e. n = 2, 4, its influence on the results is not very important (cf. tables 3 
and 4). 

However, when large values of the step n were chosen the numerical output was almost non- 
existent, though the experimental values of the correlation function and of the desired porosity were 
correctly reproduced by the routine. For instance, the image CJ was utilized with Lc = 8, n = 8, 
N¢ = 20; the first value R~ (u' = 1) of the experimental correlation is about 0.2 and thus quite small. 
Then six configurations were generated and none was found to be convergent or percolating. At 
first sight, this failure may appear to be contradictory with the fact that the experimental properties 
of the porous medium are well-reproduced. 

This behaviour can be interpreted as follows. When the first value Rz(u'= 1) of the correlation 
is small, then two adjacent elementary cubes are almost uncorrelated; one is back to the classical 

Table 3. Influence o f  the parameters Nc and n. The statistical properties correspond to 
the image 2A3 [cf. figure l(a)]. Data  are for e =0.31,  ~ = 3.8jum and Lc = 8  

N~ 91 ~NP Kmi. K ~  F K* K 

(a) n = 4  
10 100 24 0.25 54 1.5 5.3 4.3 
20 19 0 0.86 4 0.33 2.7 2.7 
27 5 0 2.1 5.4 0.53 2.8 2.8 

(b) n = 2  
10 100 59 0.16 310 1.8 6.35 4.00 
15 96 13 0.097 65 1.4 2.00 1.76 
20 18 1 0.03 6.32 1.1 1.49 1.41 
25 9 0 0.05 2.54 0.8 0.87 0.87 



710 P.M. ADLER et al. 

Table 4. Numerical results for the various samples. Data are for et = 3.8 #m (2A3, GF2, 12A13), ~t = 4.6 mm (CJ) and 
= 4.5 #m (CJDB) 

Image L c n N c ~I/ 9"/r~ r Kmi n Kma x F K* g k * 

2A3, 8 4 27 5 0 2.1 5.4 0.53 2.8 2.8 9.3 
e = 0.31 8 4 20 19 0 0.86 4 0.33 2.7 2.7 8.8 

8 4 27 2 0 0.50 0.85 0.26 0.67 0.67 16 
GF2, 8 4 20 11 0 0.31 1.24 0.70 0.70 14 

= 0.25 
16 2 20 6 1 0.21 6 1.0 1.85 1.61 11 

8 4 27 1 0 0.26 0.26 0 0.26 0.26 49 
C J, 14 4 27 1 0 0.32 0.32 0 0.32 0.32 36 
e = 0.21 8 4 20 2 0 0.24 0.33 0.16 0.29 0.29 35 

10 3 20 6 3 0.4.10 -5 4 1.3 1.08 0.72 20 

CJDB, 8 4 20 3 4 0.32 0.63 0.27 0.47 0.20 25 
e =0.14 

12A13, 8 4 20 3 9 0.080 0.50 0.66 0.26 0.065 38 
e =0.11 8 3 20 5 11 0.029 0.35 0.73 0.15 0.048 52 

site percolation which has been studied extensively (Lemaitre &'Adler 1990). When the porosity 
is smaller than a critical value ec "~ 0.3117, infinite cubic arrays do not percolate. This is exactly 
what happens here; when the step n is too large, the correlation between two adjacent cubes is too 
small. Hence, in terms of permeability computations, it is totally useless to try to extend the range 
of  the correlation too much by increasing n beyond reasonable limits. 

Conversely, when n is small, adjacent cubes are well-correlated and n does not notably influence 
the final result--as has already been pointed out. 

It may be the right place here to make a specific comment on the quality of the simulation 
devised by Joshi (1974) and Quiblier (1984). In view of the nonpercolating behaviour at 
low porosities of porous media devised from site percolation, the verification of the correlation 
function is essential to obtain percolating media at the relatively low values of the experimental 
porosities. 

All the previous discussions about the so-called artificial parameters n, Lc and Arc can now be 
summarized. 

a • Arc has to be large enough when compared to the correlation length ~ of  the medium; this 
length is distinct from Lc and is necessarily smaller than ~nLc in order to have a good description 
of the medium; large values of N~ also minimize the statistical fluctuations. However, in the present 
stage of development of the flow program, too large values of Nc can give rise to a loss in the 
efficient usage of  computer time. 

n should be small such that two adjacent elementary cubes are still well-correlated; when the 
correlation coefficient is of the order of 0.6, good results are generally obtained. Otherwise only 
nonpercolating configurations are generated. 

Finally, 2.  L¢ should be smaller than Arc because of the periodic boundary conditions. 
This study can be summed up by the inequalities 

1<< e-- <L¢<~. [351 
cm 

Of course the stronger these inequalities are, the better, but this may prove to be unfeasible, as 
noted before. An acceptable compromise between these constraints was empirically found to be 
(for the length scales a which are used here): 

N¢=20,  Lc--8 ,  n = 4 .  [36] 

Most of the definitive calculations were obtained with this set of  values. 
All the numerical results are collated in table 4, with the minimum of overlap with table 3. 

Around the values [36] of the parameters, there is no dramatic shift in the permeability. It is 
important to remember in the remainder of this section that the number of computer configurations 
is too small; the average permeabilities which are given should only be considered as orders of  
magnitude rather than precise values. 
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The values of K for (GF2, Lc = 16, n = 2, Nc = 20) and (CJ, Lc = 10, n = 3, N~ = 20) are strongly 
biased by exceptional configurations. It should be observed that, again, for the first of these 
two configurations, K" is slightly higher when Lc ~ Nc; the same observation can be made for 
table 3. 

Finally, the average permeability K" obtained for the parameters [36] was compared with the 
experimental values in figure 2; it is important to note that this comparison does not involve any 
hidden adjusted parameter and that every quantity is measured or calculated. The calculated 
permeability differs by, at most, a factor 5 from the measured one. However, the general shape 
of the experimental curve is predicted in quite an accurate way as if a systematic "error" was 
incorporated in the measurement of the unit scale. 

It is also seen in table 4 that the Carman equation is not well-verified, k* denotes the average 
of the Kozeny constant for each percolating configuration: 

k* =-- '1  ea.i [37] 
~ r2 ' 

i=l Si Ki 

where S~ is the measured wetted area per unit volume and ea.iis the actual porosity of the simulated 
configuration i. Even in the best case, k* is about twice the standard value of 5. This is, of course, 
related to the fact that the predicted permeability is too low when compared to the experimental 
values. 

This paper can be ended by putting forward some tentative ideas about this discrepancy between 
the numerical and experimental permeabilities. Three facts may cause it: 

(1) The first and simplest idea is to try to work on larger samples in order to 
better use, with small n, the experimental correlation and to minimize 
the statistical fluctuations. This will be deferred to future versions of the 
program. 

(2) There exists a basic difference between the numerical model and the real 
experiment. In the former, a single elementary cube can block the whole flow 
without disturbing the average statistical properties of the sample; this situation 
is never exactly realized in experiments where the fluid can filter through even 
very small constrictions; moreover, permeability is measured on large samples 
(which would correspond roughly to N~ = 170, n = 4) where such blocking effects 
are minimized. Such large values of N~ are not totally out of reach with the 
present developments in computer technology. Finite-size effects could also be 
minimized with large Nc. 

(3) The last reason is more subtle and may be caused by the simulation process itself. 
Only two statistical properties of the real media are fitted in the present model 
and this may not be sufficient to approximate their geometry with acceptable 
precision for a transport quantity such as permeability which is very sensitive to 
connectivity. 
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